Find-S algorithm
Find-S algorithm program in machine learning.
import pandas as pd
import numpy as np
data=pd.read_csv('finds.csv')
con=np.array(data.iloc[:,0:-1])
target=np.array(data.iloc[:,-1])
def train(con,target):
for i,val in enumerate(target):
if val=="Yes":
spec=con[i]
break
for i,h in enumerate(con):
if target[i]=="Yes":
for x in range(len(spec)):
if h[x]==spec[x]:
pass
else:
spec[x]="?"
return spec
print(train(con,target))
=============================
Data Sets->
Sky,Airtemp,Humidity,Wind,Water,Forecast,WaterSport
Sunny,Warm,Normal,Strong,Warm,Same,Yes
Sunny,Warm,High,Strong,Warm,Same,Yes
Cloudy,Cold,High,Strong,Warm,Change,No
Sunny,Warm,High,Strong,Cool,Change,Yes
import pandas as pd
import numpy as np
data=pd.read_csv('finds.csv')
con=np.array(data.iloc[:,0:-1])
target=np.array(data.iloc[:,-1])
def train(con,target):
for i,val in enumerate(target):
if val=="Yes":
spec=con[i]
break
for i,h in enumerate(con):
if target[i]=="Yes":
for x in range(len(spec)):
if h[x]==spec[x]:
pass
else:
spec[x]="?"
return spec
print(train(con,target))
=============================
Data Sets->
Sky,Airtemp,Humidity,Wind,Water,Forecast,WaterSport
Sunny,Warm,Normal,Strong,Warm,Same,Yes
Sunny,Warm,High,Strong,Warm,Same,Yes
Cloudy,Cold,High,Strong,Warm,Change,No
Sunny,Warm,High,Strong,Cool,Change,Yes
Output->
['Sunny' 'Warm' '?' 'Strong' '?' '?']
Comments
Post a Comment